

    
      
          
            
  
Welcome to piotr’s documentation!


Contents:


	What is Piotr ?
	Emulation approach

	Virtual device components

	Piotr for training

	Piotr API





	Setup instructions
	Requirements

	Install Piotr with pip

	Install from Github

	Additional tools and packages





	Quickstart
	Import an example virtual device

	Start an instance of Damn Vulnerable ARM Router

	Listing instance active processes

	Accessing a pseudo-shell on the emulated device

	Debugging a remote process with gdb-multiarch





	Reference manual
	Introduction

	Piotr main concepts

	Creating a virtual device

	Using a custom kernel and host root filesystem

	API





	API Reference








Indices and tables


	Index


	Module Index


	Search Page








            

          

      

      

    

  

    
      
          
            
  
What is Piotr ?

Piotr is a framework designed to create, run, instrument and share virtual
devices. It is designed for trainers and security researchers in order to provide
an easy way to virtualize an existing device and instrument it with Piotr’s API
to automate an analysis or to automatically exploit a vulnerability.

Piotr uses Qemu as its emulation core, and especially Qemu’s full system emulation
for the ARM architecture. It is the only supported architecture so far, but others
may be supported in the future depending on Qemu capabilities and evolution.

Piotr is quite similar to Saumil Shah’s ARM-X emulation environment, but differs
in many ways:


	its architecture is simpler than ARM-X, with no network connection required


	it is really easy to install (even for trainees)


	it provides a convenient way to define virtual devices


	it provides specific tools and a Python API to interact with running virtual devices





Emulation approach

Piotr follows the same model ARM-X previously introduced, relying on a Linux
host system that will be used to bootstrap the target environment. The target
system runs in a chroot-ed environment inside the host system, thus allowing
to debug its processes, access its filesystem without any restriction, etc.

The target device filesystem is mounted over 9P which is a file sharing protocol
that does not require any network connection and that is handled by the Linux
kernel. No need to host a samba server, it works out of the box on any Linux
computer.

Virtual devices are defined by a set of files, including a YAML configuration
file that tells Piotr how to emulate this device and many more options that may
be used to define its behavior.




Virtual device components

A virtual device is defined by the following components:


	A linux kernel compatible with the original device system


	An optional DTB (Device-tree block) file that specifies the internal components and how they are interconnected


	Two filesystems: one for the host and another one for the target device


	A set of scripts that will be used by Piotr to launch the target inside the emulated host system




Piotr manages separately the following components:


	virtual devices definitions (including configuration file, root filesystem and more)


	Host linux kernels that are used by the emulated host system and provides all the required tools to analyse the target system


	Host root filesystems




A stock host Linux kernel and host root filesystem is included in Piotr and automatically installed.
These linux kernel and root filesystem provides multiple tools and are designed to automate as much
tasks as possible.

Anyway, you may design your own root filesystems or kernels with your own tools and configuration, and install them with Piotr.
By doing so, multiple virtual devices may rely on them avoiding redundancy. These kernels and filesystems will
be automatically added to exported virtual devices, and installed during importation.




Piotr for training

As a trainer, I often needed a way to share a virtual device with my trainees. Installing
Qemu, configuring it and running a virtual device on a Linux system is far from straightforward,
and many trainees had a hard time launching a single virtual device.

Piotr provides a convenient way to export and import virtual devices that will make your life
easier. Just make trainees install piotr on their systems, share the virtual device packaged file
with them and let them import and run it. That’s no more difficult than that, and it saves time.




Piotr API

Piotr, as a Python-based framework, provides a Python module to interact with a running
virtual device and automate various tasks: create and enumerate processes, access its
filesystem, or attach a gdbserver to a specific PID. This could be interesting if you
want to automate some specific tasks, instruments a virtual device or even automate
the exploitation of a vulnerability.







            

          

      

      

    

  

    
      
          
            
  
Setup instructions


Requirements

Piotr requires qemu-system-arm (Full ARM system emulation) in order to work
correctly, therefore you must install it before using Piotr.


Ubuntu/Debian

$ apt install qemu-system-arm








Fedora

$ dnf install qemu-system-arm








ArchLinux

$ pacman -S qemu-arch-extra










Install Piotr with pip

You can use pip to install Piotr, as shown below:

$ pip install piotr








Install from Github

If you want to install the latest version of Piotr from the Github repository,
run the following commands:

$ git clone https://github.com/virtualabs/piotr.git
$ cd piotr
$ python setup.py install








Additional tools and packages

Avatar2 and gdb-multiarch are required if you want to debug a process inside a virtual device from
Python. Note that if Avatar2 is not installed, there is no need to install gdb-multiarch.







            

          

      

      

    

  

    
      
          
            
  
Quickstart

This section introduces Piotr and demonstrates its basic usages.


Import an example virtual device

Piotr allows you to import (and export) any virtual device, you can use this
feature to install on your system Saumil Shah’s Damn Vulnerable ARM Router as
shown below:

$ wget https://github.com/virtualabs/piotr/blob/main/examples/dvar.piotr?raw=true -O dvar.piotr
$ sudo piotr device add dvar.piotr
$ rm dvar.piotr





The Damn Vulnerable Arm Router is now available in your virtual devices, as
shown with the device list command:

$ piotr device list

Installed devices:

  > dvar:           Damn Vulnerable ARM Router by Saumil Shah (platform: virt, cpu: -)

 1 device(s) available








Start an instance of Damn Vulnerable ARM Router

Once the Damn Vulnerable ARM Router installed, you can directly launch it with
the following command:

$ sudo piotr device start dvar





sudo is required as Qemu needs some administrative rights to access the network
and forward packets from the localhost to the emulated device. You will be prompted
with a Piotr banner and will have a shell on the host
system. This is the host system, not the emulated device’s. You then need to
start the services belonging to the emulated device by calling the target-start
command in the host shell, as shown below:

[Host]# target-start
random: fast init done
System ready
Control Server started on port 8080


BusyBox v1.24.2 () built-in shell (ash)

[Guest]#





This device listens on port 8081 and 8080, and you can check it is working
by browsing the URL http://localhost:8080 that will show you something like
this:

TODO: add screenshot

In another terminal, you may check that an instance is actually running with
the following command:

$ sudo piotr device running
sudo piotr device running
Running instances:

  Instance name                           Device
> kind_hofstadter                         Damn Vulnerable ARM Router by Saumil Shah

1 running instance(s)





Each running instance is given a random name, unless you specify it when
starting a device. The one created here is kind_hofstadter, and it identifies
this instance. This may be useful if you have multiple running instances.




Listing instance active processes

Piotr provides also some specific command-line tools that may be helpful.
piotr-ps allows you to list all the active processes for a given instance:

$ sudo piotr-ps
PID   USER     COMMAND
    1 root     init
    2 root     [kthreadd]
    3 root     [rcu_gp]
    4 root     [rcu_par_gp]
    5 root     [kworker/0:0-eve]
    6 root     [kworker/0:0H-kb]
    7 root     [kworker/u2:0-ev]
    8 root     [mm_percpu_wq]
    9 root     [ksoftirqd/0]
   10 root     [rcu_sched]
   11 root     [rcu_bh]
   12 root     [migration/0]
   13 root     [cpuhp/0]
   14 root     [kdevtmpfs]
   15 root     [kworker/u2:1-fl]
   79 root     [kworker/0:1-eve]
  111 root     [khungtaskd]
  257 root     [oom_reaper]
  258 root     [writeback]
  260 root     [kcompactd0]
  261 root     [crypto]
  263 root     [kblockd]
  264 root     [ata_sff]
  381 root     [rpciod]
  382 root     [kworker/u3:0]
  383 root     [xprtiod]
  398 root     [kswapd0]
  469 root     [nfsiod]
  548 root     [kworker/0:1H-kb]
  647 root     [ext4-rsv-conver]
  664 root     /sbin/syslogd -n
  668 root     /sbin/klogd -n
  705 root     /sbin/dhcpcd -f /etc/dhcpcd.conf
  711 root     /usr/bin/qemu-ga -p /dev/vport0p1
  712 root     -sh
  731 root     {target-start} /bin/sh /usr/sbin/target-start
  735 root     {init.sh} /bin/sh /piotr/init.sh
  744 root     /usr/bin/miniweb
  745 root     /usr/bin/lightsrv
  746 root     sh
  767 root     /bin/ps aux








Accessing a pseudo-shell on the emulated device

Piotr provides the piotr-shell utility that behaves almost like a normal
shell except you cannot change directory (a limitation of the current
implementation):

$ sudo piotr -g -i
>> PIOTR v1.0
>>
>> This is an interactive pseudo-shell with limitations:
>>   - all commands are executed from the root directory
>>   - stderr is not captured and won't be displayed
>>   - no commands history
>>   - no real-time standard output, commands are executed
>>     and results shown once done

[Guest]#








Debugging a remote process with gdb-multiarch

Piotr provides the piotr-debug utility that basically runs a gdbserver
inside the host system and attach it to a given PID:

$ sudo piotr-debug 725
Starting gdbserver on the target instance (kind_hofstadter)
Gdbserver is now running on instance with PID 839





Once gdbserver attached to the target process, you may use gdb-multiarch
to connect to it and remotely debug the target process.







            

          

      

      

    

  

    
      
          
            
  
Reference manual


Introduction


Why another emulation framework for IoT training and research ?

There are some emulation frameworks available on the Internet that targets
devices that embed a Linux operating system (or similar):


	Firmadyne, an automated firmware emulation framework


	ARM-X, a training-oriented emulation framework developed by Saumil Shah




Firmadyne is interesting because it tries to automate everything, but it is
also a huge limitation. We did not want an automated system, we were looking
for an efficient emulation framework able to run custom-made virtual devices
that don’t use the same configuration as the original ones.

ARM-X is an emulation designed by Saumil Shah, mostly using shell scripts to
provide an emulation environment based on a host system that embeds a target
system. The target system runs in its own environment and is therefore easy to
analyze. However, the setup is quite complex and adding a new device is somehow
challenging for non-experienced users. Moreover, adding or removing virtual
devices is not straightforward, and this could be an issue for trainees.

Well, for all these reasons it seemed obvious we needed another Qemu-based
instrumentation framework.




Interesting features

Piotr has been designed to be used for IoT security trainings and security
research, with the following features in mind:


	full-system qemu-based emulation environment


	easy setup, can be installed with pip


	import/export of virtual devices


	virtual device instances use temporary filesystems to avoid “bricking”


	emphasize on reusability (kernels, filesystems, etc.)


	network should be optional (no samba server, etc…)







Approach

The approach brought by ARM-X seems to be efficient and provide the best
solution to emulate an embedded device and allow debugging and more at the
same time. Piotr definitely relies on an architecture inspired from ARM-X.




Supported architectures and platforms

Since Piotr uses Qemu, it has the same limitations. Full-system emulation is
available in Qemu for various architectures, but ARM seems to be the more
mature architecture that provides a huge set of different platforms (vexpress,
versatilepb, virt, etc.).

Qemu developers recommend to use the virt platform as it is the most
flexible platform (while others have hardware limitations such as low RAM
and limited buses).

At the moment, the only supported architecture is ARM for the virt platform.


Note

Piotr is designed to run on a Linux system, and has been only tested on this system so far.








Piotr main concepts

Piotr manages three different types of components:


	host filesystems


	host Linux kernels


	virtual embedded devices




This section describes these components and how they are managed by Piotr.


Kernels and host filesystems

Piotr emulated devices rely on an emulated host system to run, and this host
system uses a Linux kernel and an associated filesystem. We can design our
own different kernels and host filesystems, and add them to Piotr.

More than one virtual device may use the same host kernel and host filesystem,
since they are shared amongst virtual devices.


Host filesystem

Piotr host filesystem contains all the required system files required to boot
the host system, and some extra tools that are required for analysis:


	qemu-agent is provided in Piotr’s stock host filesystem and is required by many tools to interact with running instances


	gdbserver is provided in Piotr’s stock host filesystem to allow remote debugging




Some custom configuration files are also used to display the Piotr banner and allow root to login without password,
or even set the prompt according to the running system (host ou emulated target, also called guest).

Filesystems must be ext2 raw images, named as follows: <platform>-<version string>[-[optional tags]].ext2.
At the moment, only the virt platform is supported.

We can use piotr to list the registered filesystems:

$ piotr fs list
Installed host filesystems:

> virt.cortex-a7.little-5.10.7.ext2   (version 5.10.7, platform: virt, cpu: cortex-a7 (little-endian), type: ext2)

1 filesystem(s) available





Or register a new one:

$ piotr fs add virt.cortex-a15.little-5.10.7.ext2





Filesystems are usually tied to specific kernel versions as they contain kernel modules
that are loaded at boot time.

Our host filesystems are stored in our Piotr local folder ($HOME/.piotr/fs/), as plain files.


Note

If you don’t know what you are doing, just stick with the provided stock filesystem.






Kernel

In the same manner, Piotr manages a list of Linux kernels that would be used to boot the host system
but also to run the emulated device. It could be interesting to compile a custom kernel if some features
are missing in the stock kernel, or if the emulated device is intended to be run on a specific version.

Kernels are managed the same way the host filesystems are, using piotr. We can list the existing kernels
by issuing the following command:

$ piotr kernel list
Installed kernels:

> virt.cortex-a7.little-5.10.7
Linux version 5.10.7, platform: virt, cpu: cortex-a7 (little-endian)

1 kernel(s) available





kernels are named exactly the same way host filesystems are: <platform>.<cpu>.<endianness>-<version string>.

We can add or remove kernel with piotr, as shown below:

$ piotr kernel add virt.cortex-a7.little-5.10.7
$ piotr kernel remove virt.cortex-a7.little-5.10.7





Our host kernels are stored in our Piotr local folder ($HOME/.piotr/kernels/), as plain files.






Virtual embedded device

A virtual embedded device, as Piotr understands it, is a combination of the
following:


	a Linux kernel


	a root filesystem


	an (optional) DTB file


	additional files,tools and scripts that are required by Piotr to start the emulated environment




A virtual device is a template that would be used by Piotr to create virtualized
environments that mimick a real device behavior.

Here is an example of a device directory:

dvar/
  - /config.yaml
  - /rootfs/






So, what is a virtual device made of ?

Virtual devices are stored in our Piotr local folder ($HOME/.piotr/devices/),
and each subfolder defines a virtual device.

A virtual device subfolder contains a config.yaml file that describes the
environment in which the virtual device must run. This configuration file tells
Piotr how it should configure Qemu to correctly emulate the device, by
specifying one or more human-readable options.

A root filesystem is also provided (in a specific rootfs folder), containing
the device root filesystem with the exact permissions and owners. That explains
why Piotr needs administrative rights to boot a virtual device, as it must
access this filesystem and manipulate it. That also means we may need root
privileges to browse the content of this root filesystem.

Extra folders may contain a custom linux kernel or a specific DTB file, depending
on the device specifications. These files must be referenced in the config.yaml
file located at the root of the device folder.




Running a virtual device

Piotr does not directly run a device, as it could cause some issues if an
unexpected error or mistake is made while it is running. In order to keep the
device safe, Piotr creates a copy of the host filesystem and the device root
filesystem as well, and then runs the device with these copies, avoiding any
permanent damage to the original filesystems.

Piotr performs the following task in order to create an instance of a
virtual device:


	it parses the device’s config.yaml file


	it checks if a compatible host filesystem and kernel are available


	it then creates a copy of the host filesystem


	it launches qemu-system-arm with a options that are generated from the configuration


	when the device boots, it starts all the required services thanks to the host filesystem boot scripts




Any modification brought to the host filesystem during the use of a
virtual device won’t cause any change. However, any modification brought to
the device filesystem will be persistent, except if a specific mode is used
to mount this filesystem.

Once a virtual device is running, Piotr refers to it as an instance.
Instances of virtual devices can then be managed the same way as other Piotr
components do, through Piotr command-line utility piotr.

To create an instance of a virtual device, use the following command:

$ sudo piotr device start dvar





It will launch a virtual device from its template, and pick a random instance
name. Running instances can be enumerated as follows:

$ sudo piotr device running
Running instances:

  Instance name                           Device
> kind_hofstadter                         Damn Vulnerable ARM Router by Saumil Shah

1 running instance(s)





We can launch a virtual device with a specific instance name with the following
command:

$ sudo piotr device start dvar my-dvar-instance





And of course, we can stop a running instance with the following command:

$ sudo piotr device stop my-dvar-instance





When a running instance is stopped, the duplicated host filesystem is removed
once the virtual device shut off.




Exporting a virtual device

Piotr provides a way to export a specific virtual device, by packaging all the
required dependencies into a single archive file in a way it can be shared and
imported.

The packaging process takes the following data and insert them into the archive:


	the device’s root filesystem (located in the rootfs directory of the device folder, under $HOME/.piotr/devices/)


	the device configuration file (config.yaml)


	the device kernel (from registered kernels or custom kernel, depending on the device configuration)


	the device host filesystem (from registered host filesystem or custom host file system if defined in the device configuration)




Administrative rights are required in order to export a virtual device.

To export a device, use the device export command, as shown below:

$ sudo piotr device export davr davr.piotr





This command exports a device named davr into the davr.piotr archive file.




Importing a virtual device

Importing a device basically takes an archive file created by the export feature, and installs everything at the right
place:


	the device folder is created in the user Piotr’s local folder


	the root filesystem is extracted and stored in plain


	the device kernel is installed and registered if it is not one dedicated to this device


	the host filesystem is installed and registered if it is not one dedicated to this device




The device is then ready to use, with all of its dependencies automatically installed. Kernel files and host
filesystems installed and registered during import may be used to create new devices as well.

To import a device, use the device add command as shown below:

$ sudo piotr device add davr.piotr








Virtualizing an existing embedded device

If we plan to virtualize an embedded device, there are a few steps to follow.
Each of these steps can fail for one reason or another, so there is no certainty
that we would be able to virtualize a specific device:


	we must determine the version of its Linux kernel and the specific drivers it uses


	we must have a copy of the root filesystem of the device we want to emulate


	we must also determine how the system accesses (read/write) its non-volatile parameters




Extracting the root filesystem is not straightforward, and in most cases it is
split among multiple partitions that we would have to assemble to recover the
actual root filesystem. Doing so would also mean modifying some configuration
files or bootup scripts that are used to mount everything at the right place.

Identifying the version of the kernel used by the device, as well as the custom
drivers that should be loaded in order for the system to boot correctly may be
challenging, depending on the system. Again, we would have to find some tricks
to avoid using these drivers, when sometimes we would end up coding some fake
drivers to make the system believes everything is normal while it is obviously
not the case. It is sometimes better to stick to the expected linux kernel
version, even if it causes some issues to the emulated host.








Creating a virtual device

Creating a virtual device from an existing real device requires to:


	extract or rebuild its root filesystem


	identify the underlying hardware (CPU, memory, etc.)





Create a device template

Piotr provides a command to create a default device template:

$ sudo piotr device create my-device





This will create a folder named my-device in your piotr device directory
(i.e. ~/.piotr/devices/), and populate it with a default configuration file
and an empty rootfs directory.

The device directory should look like this:

device/
    config.yaml
    rootfs/








Rebuild the device’s root filesystem

The main idea is to rebuild the device’s root filesystem including its mounted
partitions. For instance, if your device mounts /dev/mtdblock0 to /usr, we
have to manually copy the files present in the partition filesystem into /usr.

Thus, we end up with a link-free filesystem similar to the one used by the device
when it runs. This filesystem must be copied in the rootfs directory, in the
corresponding device directory. We must perform this step as root, as we need to
keep the correct permissions, user and group IDs in this filesystem.




Create the device configuration file

Once the root filesystem ready, we need to fill the config.yaml file present
in the device directory.

First, we set the target architecture (based on what was observed on the real
hardware), as shown below:

version: "1.0"
device:
    name: My IoT device
    machine:
        platform: virt
        memory: 1024M
        cpu: cortex-a7





The configuration above declares a device called “My IoT device” that will run
on Qemu’s virt platform (the only currently supported by piotr), with 1024M
of RAM.

We then tells piotr which kernel to use and how to load the device root filesystem:

version: "1.0"
device:
    name: My IoT device
    machine:
        platform: virt
        memory: 1024M
        cpu: cortex-a7

    kernel: 4.19.196
    bootargs: "root=/dev/vda rw console=ttyAMA,115200"
    guestfs: virtfs





We tell piotr to use a generic Linux kernel 4.14.131 (that ships with the latest
version of piotr), we also provide some boot arguments (bootargs) which are
pretty standard for Qemu’s virt platform, and asks for our device root filesystem
to be loaded through Plan9 Resource Sharing protocol (9P2000). This last option
can be omitted as it is the default behavior.

However, you may want piotr not
to use this sharing mechanism and therefore use embed instead of virtfs. In
this case, piotr will use a copy of the device root filesystem and embed it
into the host filesystem before running it.

We have specified so far the machine architecture, hardware platform and the
kernel to use (with its boot arguments). We may want to ask piotr to forward
a TCP port to access our device SSH service for instance, through the following
configuration:

version: "1.0"
device:
    name: My IoT device
    machine:
        platform: virt
        memory: 1024M
        cpu: cortex-a7

    kernel: 4.19.196
    bootargs: "root=/dev/vda rw console=ttyAMA,115200"
    guestfs: virtfs

    network:
        nic0: user

    redirect:
        nic0:
            ssh: tcp,2222,22








Creating a bootup script

When our emulated host will start our device in a chrooted environment, it
will execute a specific script to start the device’s services. This script will
act as an init script, without all the mountings and device specific tasks that
will not work as expected, since it is absolutely not the real hardware.

This script must be located in a piotr folder in the device root filesystem,
and called init.sh. Below an example of such a script:

#!/bin/sh

# Emulate sdcard (required if you are using the sdcard option in config.yaml)
mount -t ext2 /dev/vdb /mnt/sdcard

# Add devpts support (mandatory)
mount devpts /dev/pts -t devpts

# Start prerun program
# (required to avoid errors due to emulation)
/mnt/mtd/prerun

# Set the guest shell prompt
export PS1='[Guest]# '

# Start a shell
sh








Booting your device

When we are done with the root filesystem, device configuration file and init
script, we can give our emulated IoT device a try. We use piotr to start the
device and the emulated host system boots up:

$ sudo piotr device start ipcam
Booting Linux on physical CPU 0x0
[...]
Serial: AMBA PL011 UART driver
9000000.pl011: ttyAMA0 at MMIO 0x9000000 (irq = 54, base_baud = 0) is a PL011 rev1
console [ttyAMA0] enabled
SCSI subsystem initialized
[...]
NET: Registered protocol family 17
9pnet: Installing 9P2000 support
Registering SWP/SWPB emulation handler
rtc-pl031 9010000.pl031: setting system clock to 2021-06-30 08:58:11 UTC (1625043491)
ALSA device list:
No soundcards found.
EXT4-fs (vda): mounted filesystem without journal. Opts: (null)
VFS: Mounted root (ext4 filesystem) on device 254:0.
devtmpfs: mounted
Freeing unused kernel memory: 1024K
Run /sbin/init as init process
EXT4-fs (vda): re-mounted. Opts: (null)
Starting syslogd: OK
Starting klogd: OK
Running sysctl: OK
Saving random seed: random: dd: uninitialized urandom read (512 bytes read)
OK
Starting network: OK
Starting dhcpcd...
no interfaces have a carrier
forked to background, child pid 713
Starting ser2net: no configuration file
Starting qemu agent...
random: dhcpcd: uninitialized urandom read (120 bytes read)


██████╗ ██╗ ██████╗ ████████╗██████╗
██╔══██╗██║██╔═══██╗╚══██╔══╝██╔══██╗
██████╔╝██║██║   ██║   ██║   ██████╔╝
██╔═══╝ ██║██║   ██║   ██║   ██╔══██╗
██║     ██║╚██████╔╝   ██║   ██║  ██║
╚═╝     ╚═╝ ╚═════╝    ╚═╝   ╚═╝  ╚═╝

    -----< version 1.0.0 >-----

[Host]#

We then start the guest (our embedded device):





[Host]# target-start
random: fast init done
Can't open /dev/akgpio
: No such file or directory
GPIO dev not init!!!
=== Start no-auth telnetd server ===
open /dev/akpcm_cdev0 failed: No such file or directory.
=== play type : 0 ===
GPIO dev not init!!!
Can't open /dev/akgpio
: No such file or directory
otg_hs: version magic '3.4.35 mod_unload ARMv5 ' should be '4.19.91 SMP mod_unload ARMv7 p2v8 '
insmod: can't insert '/mvs/modules/otg-hs.ko': invalid module format
[Guest]#





A single device cannot be found (/dev/akgpio) and some drivers could not be loaded due to
a wrong kernel version used to start the target system, but it boots up and runs all the
network services we want to test.

We may also compile a Linux kernel for the exact same architecture and create a
compatible host filesystem. As one can see, Linux version 3.4.35 is required here.

However, emulating real hardware such as GPIOs or even a CCCD sensor will be
very difficult and this demonstrates the limits of emulation.






Using a custom kernel and host root filesystem

As shown above, some devices may require dedicated configurations that do not fit
the standard use. In this case, it is recommended to create a kernel specifically
for a device, along with a compatible host filesystem.


Prerequisites

We need a framework to build a kernel and a root filesystem: buildroot. Buildroot
provides a very convenient way to compile kernels and create a root filesystem.

It is usually available in the main Linux distributions application repositories,
or can be downloaded from its website (https://buildroot.org).




Building a kernel for Piotr

If we need a specific kernel version for a virtual device, we will build one that
fits our needs with buildroot. This section is not intended to be a complete guide
for buildroot, but will cover the specifics required to compile a kernel compatible
with Piotr.

In order to use all the required features, buildroot’s toolchain must support
WCHAR and C++.


Kernel configuration

First, you must configure buildroot to build a compatible kernel and filesystem
for a Qemu ARM architecture compatible with Qemu’s virt platform:

$ make qemu_arm_versatile_defconfig





For recent Linux kernel versions, Plan 9 resource sharing support (9P2000) must
be enabled. In buildroot, the kernel configuration is done through a text-based
interface:

$ make linux-menuconfig





First, enable Plan 9 Resource Sharing Support in Networking support.
Then in Filesystems > Network File Systems, make sure Plan 9 Resource Sharing Support
(9P2000) is enabled. 9P POSIX ACLs or security labels may be enabled, but are
not mandatory.

By default, buildroot enables all the required options for Qemu, and it would
do the job for recent versions of Linux kernel. If you plan to use older versions
of Linux kernel, it may be challenging to get buildroot to compile it as it may
require older versions of gcc that may be incompatible. Moreover, please consider
using the embed option in your YAML device configuration file for option
device.guestfs rather than virtfs.




Compilation

Once your kernel configured, run the following command to compile it:

$ make linux





Buildroot will compile the selected kernel version and will produce
a zImage file in the output/images/ folder. Rename this file as
follows:

$ mv output/images/zImage /tmp/virt.cortex-a7.little-5.10.7





The expected pattern is platform.cpu.endianness-x.y.z, you must comply with it
in order to be able to register/install this kernel into Piotr’s kernels.




Installation

Use piotr to install your kernel. It will be copied into Piotr’s kernels
folder and automatically available.

$ sudo piotr kernel add /tmp/virt.cortex-a7.little-5.10.7










Building a root filesystem

Using buildroot, it is possible to create a root filesystem that provides
everything required to host our target device filesystem.


Mandatory tools required by Piotr

Buildroot allows the following applications to be built and installed in
the target root filesystem, under the Target packages submenu when
configuring buildroot:

$ make menuconfig






	gdb and gdbserver (requires a toolchain that supports c++, wchar_t, threads and thread debugging)


	Qemu guest agent (qemu-ga) provided by the “Qemu tools” package




These are mandatory, but we may also install for convenience:


	nano as a text editor


	filesystems utilities (squashfs, e2fsprogs, etc.)


	python3





Note

Use the same toolchain as you would do for the corresponding kernel, in order to
build executable files that will run under the target architecture !






Creating the root filesystem

Once buildroot configured, just use make to build the filesystem:

$ make





The generated filesystem is available in output/images/rootfs.ext2 and is ready
to be modified, because we need to add Piotr’s host filesystem files.

We mount this filesystem on a mountpoint, and then add the required files:

# mkdir /tmp/fs
# mount -t ext2 ./output/images/rootfs.ext2 /tmp/fs
# cp -rf <piotr dir>/hostfs-template/* /tmp/fs/
# umount /tmp/fs





Eventually, we rename this root filesystem following the expected pattern:

# mv ./output/images/rootfs.ext2 /tmp/virt.cortex-a7.little-1.0.0.ext2





And we add it to our stock host filesystem using piotr:

$ sudo piotr add /tmp/virt.cortex-a7.little-1.0.0.ext2





And this host filesystem is then installed and available.








API

Since Piotr is a python-framework, it exposes an API that can be used to
automate tasks such as:


	starting and stopping an instance of a virtual device


	executing commands on the emulated host system or the target that runs in it


	enumerating processes on the emulated device


	debugging remote processes





Importing Piotr API

Piotr API is imported in Python with the following code:

from piotr.api import *








Creating and accessing a virtual device


Starting a virtual device

To create and start an instance of a virtual device, we must first get a Device
object corresponding to the device we want to instanciate:

device = Device('dvar')





Then, we can create an instance by calling run() as shown below:

instance = device.run(alias='my-instance', background=True)





The call to run() returns an Instance object that represents the running
virtual device.




Retrieving a running instance

Piotr allows us to enumerate the running instances, by using Piotr and its instances()
method:

for instance in Piotr.instances():
    print(instance)





A specific running instance can be retrieved with its instance name, using instance():

instance = Piotr.instance('my-instance')










Managing processes


Creating a process

We can create a process that will run inside the host system by calling exec_host(),
as shown below:

# Launch /usr/bin/example on host system and in background
pid = instance.exec_host('/usr/bin/example', wait=False)





We may also want to start a process in the context of the target system, by
using exec_target():

# Launch /usr/bin/example on target system, and in background
pid = instance.exec_target('/usr/bin/example', wait=False)








Enumerating processes

It is then possible to enumerate the running processes on this instance:

for process in instance.ps():
    print('PID:%d - %s' % (process.pid, process.path))








Finding a process PID

If we want to find the PID of an executable based on its path, use pid() method
with the search executable path:

pid = instance.pid('/usr/bin/example')





Since target and host processes are available from the host system, we do not
have to specify on which system the process we are looking for is ran.




Terminating a process

To terminate a process, just call the kill() method as shown below:

pid = instance.pid('/usr/bin/example')
if pid is not None and pid>0:
    instance.kill(pid)










Remote debugging a process

It is also possible to attach a gdbserver to a process running in the host or target system,
and then to interact with this server. First, we need to debug a specific running process:

target_pid = instance.pid('/bin/my-target-program')
if target_pid > 0:
    dbg = instance.debug(target_pid)





The debug() method starts a gdbserver instance, attach it to the target
process, and returns a Debugger object. This object drives a gdb debugger and
allows to:


	access the remote process registers


	access the remote process memory


	set and remove breakpoints


	run, single step and stop execution





Note

This debugger capability requires avatar2 [https://github.com/avatartwo/avatar2] to be installed on our machine, as it uses a
component provided by this Python package. This package is not installed by default, but
is mandatory for this feature.




Controlling the execution

Once our debugger attached, the process is stopped. We can set a breakpoint at a specific address:

# Set breakpoint at address 0x11e8
dbg.set_breakpoint(0x11e8)

# Continue execution
dbg.cont()

# Wait for breakpoint to be reached
dbg.wait()








Accessing and modifying registers

Registers can be read with the read_register() method, and written with the write_register() method:

# Show PC
print('PC: 0x%08x' % dbg.read_register('pc'))

# Modify PC
dbg.write_register('pc', 0x11f4)

# Continue execution
dbg.cont()










Stopping a running instance

Just call the stop() method to stop a running instance:

instance.stop()













            

          

      

      

    

  

    
      
          
            
  
API Reference

Piotr API

This module allows to interact with/instrument Piotr virtual devices in a
pythonic way. It exposes a main class, Piotr, that is able to
interact with running instances and to automate things.


	
class piotr.api.Device(deviceName)

	API Device object.


	
get_sysroot()

	Return this device root fs path






	
run(alias=None, background=False)

	Run emulated device.










	
exception piotr.api.DeviceNotFound

	




	
class piotr.api.Instance(guest, device)

	This class represents a Piotr running device instance and allows to interact
with it, execute commands into the emulated host and target (if Qemu agent
is supported by the device), enumerate and manipulate process.


	Parameters

	
	guest (piotr.qemu.QemuPlatform) – Qemu guest


	device (str) – Name of parent device, as referenced in Piotr devices list









	
debug(pid, ip='0.0.0.0', port=4444, gdb_executable='gdb-multiarch')

	Runs a gdb server and attaches it to a process.






	
exec_host(command, wait=True)

	Execute a command in host.






	
exec_target(command, wait=True)

	Execute a command in guest.


	Parameters

	
	command (str) – command to execute


	return_output (bool) – wait for the process to end and return output






	Returns

	command output or executable PID










	
get_sysroot()

	Return this instance root path






	
kill(pid, sig=9)

	Kill a processus.






	
pid(process_name)

	Find process ID from process name
:param process_name: process name
:type process_name: str
:return: PID of the process, None on error






	
ps()

	Run ps on this target and return a list of processes.


	Returns

	list of processes










	
stop()

	Stop instance.






	
target_start()

	Run target in host.










	
class piotr.api.Piotr

	Piotr main API.


	
static devices()

	Enumerate registered devices.






	
static instance(inst_name)

	Find an existing instance by name






	
static instances()

	Enumerate running instances.










	
class piotr.api.Process(pid=- 1, user=None, path=None)

	This class holds information about a process on the emulated system.









            

          

      

      

    

  

    
      
          
            

   Python Module Index


   
   p
   


   
     		 	

     		
       p	

     
       	[image: -]
       	
       piotr	
       

     
       	
       	   
       piotr.api	
       

   



            

          

      

      

    

  

    
      
          
            

Index



 D
 | E
 | G
 | I
 | K
 | M
 | P
 | R
 | S
 | T
 


D


  	
      	debug() (piotr.api.Instance method)


      	Device (class in piotr.api)


  

  	
      	DeviceNotFound


      	devices() (piotr.api.Piotr static method)


  





E


  	
      	exec_host() (piotr.api.Instance method)


  

  	
      	exec_target() (piotr.api.Instance method)


  





G


  	
      	get_sysroot() (piotr.api.Device method)

      
        	(piotr.api.Instance method)


      


  





I


  	
      	Instance (class in piotr.api)


  

  	
      	instance() (piotr.api.Piotr static method)


      	instances() (piotr.api.Piotr static method)


  





K


  	
      	kill() (piotr.api.Instance method)


  





M


  	
      	
    module

      
        	piotr.api


      


  





P


  	
      	pid() (piotr.api.Instance method)


      	Piotr (class in piotr.api)


      	
    piotr.api

      
        	module


      


  

  	
      	Process (class in piotr.api)


      	ps() (piotr.api.Instance method)


  





R


  	
      	run() (piotr.api.Device method)


  





S


  	
      	stop() (piotr.api.Instance method)


  





T


  	
      	target_start() (piotr.api.Instance method)


  







            

          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		
          Welcome to piotr’s documentation!
        


        		
          What is Piotr ?
          
            		
              Emulation approach
            


            		
              Virtual device components
            


            		
              Piotr for training
            


            		
              Piotr API
            


          


        


        		
          Setup instructions
          
            		
              Requirements
              
                		
                  Ubuntu/Debian
                


                		
                  Fedora
                


                		
                  ArchLinux
                


              


            


            		
              Install Piotr with pip
            


            		
              Install from Github
            


            		
              Additional tools and packages
            


          


        


        		
          Quickstart
          
            		
              Import an example virtual device
            


            		
              Start an instance of Damn Vulnerable ARM Router
            


            		
              Listing instance active processes
            


            		
              Accessing a pseudo-shell on the emulated device
            


            		
              Debugging a remote process with gdb-multiarch
            


          


        


        		
          Reference manual
          
            		
              Introduction
              
                		
                  Why another emulation framework for IoT training and research ?
                


                		
                  Interesting features
                


                		
                  Approach
                


                		
                  Supported architectures and platforms
                


              


            


            		
              Piotr main concepts
              
                		
                  Kernels and host filesystems
                


                		
                  Virtual embedded device
                


              


            


            		
              Creating a virtual device
              
                		
                  Create a device template
                


                		
                  Rebuild the device’s root filesystem
                


                		
                  Create the device configuration file
                


                		
                  Creating a bootup script
                


                		
                  Booting your device
                


              


            


            		
              Using a custom kernel and host root filesystem
              
                		
                  Prerequisites
                


                		
                  Building a kernel for Piotr
                


                		
                  Building a root filesystem
                


              


            


            		
              API
              
                		
                  Importing Piotr API
                


                		
                  Creating and accessing a virtual device
                


                		
                  Managing processes
                


                		
                  Remote debugging a process
                


                		
                  Stopping a running instance
                


              


            


          


        


        		
          API Reference
        


      


    
  

_static/plus.png





_static/file.png





_static/minus.png





